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This report summri_es the work performed on NASA Contract _$5-I0667

ao_ification number three. Objectives of this contract were to improve the

progran_ing capability of the OBP system and at the saae tim_ reduce CPU

control circuit_ for Improved packaging feasibility. The StateMent of Work,

associated with this contract, was divided into three rain tasks. The first

task, Task 1, dealt with the investigation of two techniques for improving

the ad_ressing c_psbility of the OBP. The eval_tion of Task 1 indicated that

neither addressing approach was suitable for the OBP systea and as a result

a new approach was selected for Task 2. Section 3.0 of this report Lists

those changes selected for Task 2. After these changes were finalised, they

were designed into the CPU, and drawings were updated. The changes associated

with Task 2 were Implemented so that the control circuitry of the CPU was

reduced. Tills reduction in control circuitry aided the implementation of

Task 3.

The objective of Task 3 was to evaluate the control circuitry on

the basis of redesigning i_ _or better partitioning. Existing control

circuitry in the CPM was orgarLized in groups that had similar logic structures.

These groups were then used in the partitioning of the central logic. The

results of thls reorganisation were evaluated and it was felt that a more

efficient approach to partitioning could be taken. Therefore, a preliminary

investigation into the use of rmad-cn_ memories for the control sntion was

undertaken since this approach appears to simplify the partitioning task. The

results Of th_s study are also presented in the report.



2.0 TASK i

The purpose of Task i of this report was to evaluate two addressing

techniques for the OBP-CPU. These two addreaaiuE approaches were chosen as

hhe m_st desirable approaches to consider at the outset of the contract.

Direct inputs from OBP programmers indicated both approaches would provide

the desired addreaelng flexibility. Therefore the selection of the preferred

approach was primarily dependent o_ its impact on the hardware. The following

addressing techniques were evaluated.

2.0.1 Ou_ne of Char_es for Task_l

The followlng outline illustrates the changes to the C_U for

Techniques I and If.

2.0. i.i Technloue I

Eodifications:

i. Bits 7-12 replace bits i-5 for minor op-code decoding.

2. Bits i-6 of the instruction word are used as the immediate

operand.

Instructions Added

1. LOAD A I_DIATE

2. PLUS A I_EDIATE

3. MINUS A IMMEDIATE

_. LOAD EA IMMEDIATE

5. PLUS EA L_DIATE

6. MINUS EA IMMEDIATE

2.0.1.2 TechniQue II

F_difioatiens:

i. Bits 12 and 13 of the instruction word are used as an addressing ....

mode field for decoding one of four addressing modes.

2. Addition of immediate addressi_ to applicable major op-_ode

instructions. An ii bit i.mediate operand is used.

2
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3. Addition of indhrect addressing to applicable major op-code

instructions. A 5 bit page register is required to m_tain

the 16 bit address.

2.1 Addressin_ Techni_ I

The discussion of this technique is divided into two sectS ons. The

first section discusses the general modifications required in the CPU

and the second section discusses the specific details of the additional instruc-

tions.

2.1.1 Modifica%_ons to the CPU

The implementation of this approach, required a change to the instruc-

tion field decoding. A total of six instructions was added to the instruction

set and all six were decoded as minor op-code instT.nactions. Since these

instructions added immediate addressing capabilities to the CPU, it was

desirable to utilize the least significant six bits of the instruction word

as the inmedlate value and this selection was incorporated into the design.

This decision was made because of the available gating and flow organizations,

and the inherent programming ease associated with the use of the least

significant bits. The selection of the least significant six bits as the

i_edlate value required a change in the mAnor op-code field decoding. In

the original systems, bits 1-5 were decoded as the manor op-code. Due to the

addition of the immediate instructions, the manor op-code field was moved

to bits 7-12 and associated decoding was changed to satisfy decoding require-

Addition of Instructions

Technique I provided immediate addressing capability for the,OBP

'm
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programs by adding six minor op-code instructions to the instruction set.

These added instructions were similar to existing major op-code instructlons

with the difference being the use of bits I-6 of the instruction word as an

operand rather than part of an address for the operand fetch. The following

instructions were investigated:

i. I_IADA IMMEDIATE

2. PLUS A IMMEDIATE

3. _ A IMMEDIATE

_. LOAD EA IMMEDIATE

5. PLUS EA LMMEDIATE

6. _ F.A IMMEDIATE

2.1.2.1 Load Immediate Instructions

Two _oad immediate instructions, LOAD A IMMEDIATE and LOAD EA

IMMEDIATE were evaluated for Technique I. These load immediate instructions

gate the immediate operand field of the instruction word through the adder

and into the selected register.

Two phases (@i' _2) are required to implement these instructions with

phase one utilized as the normal instruction fetch phase. The second phase,

_2' executes the imnediate load by gating the innediate operandiinto the

adder which in turn is clocked into the selected register. Since load functions

do not require carry delays through the adder, only one clock cycle is

necessary to implement the load. A total of three clock cycles are required

to complete the load immediate initructions,

The existing instructions, LET and SET EXT_SION WITH, are similar in

function to the load ieznedlate instructions. In _2' the existing inatrmctions

|
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fetch an operand from memory and load the selected register. The fetch-load

function is exesuted in three clock cycles, for a total of five clock cycles

for complete execution. Since the load _ediate instruction requires three

clock cycles for completiov, two clock cycles are saved.

The total hardware impact of these instructions was minimal, with the

majority of the changes being implemented _J_the control area. The MORA,

SUHACC, SU_, PA_ clock and ACC clock control circuits require modification.

In addition, logic was added to decode these instructions and the adder inputs

were changed. The gates controlling the most significant 12 bits of the A

input to the adder were changed from two inputs to three inputs in order to

inhabit these bits during the load immediate instructions.

2.1.2.2 Plus Immedlate Instruction

Two plus immediate instructions, which add the immediate value to the

accumulator or to the extended accumulator, were evaluated for Technique I.

The plus immediate instructions gate the immediate value of the instruction word

into one set of adder inputs and the selected register into the other set

of adder inputs. Then, the adder output is clocked into the selected

register.

These two instructions have similar phasing and are implemented by

utilizing much of the same gating. These instructions require two phases

(_l' _2 ) with phase one used as the normal instruction fetch phase. Phase

two (wPdch requires 2 clock cycles) gates in the immediate portion of the

instruction word, and inhabits the remaining inputs to that set of adder inputs and

also gates the selected register into the other set of adder inputs. The

adder is then clocked into the selected register and the instruction is completed

in four d_ock cycles. In the original CPU design, the PLUS instruction (which



is very similar to the plu_ immediate instructions) adds the MOR to the ACC.

During the second phase of the instruction, the operand fetch and add are

executed. These two operations are completed in three cloak cycles. Thus,

the PLUS instruction is five clock cycles in duration and onl_ one cycle longer

than the plus immediate instructions.

Very few additional gates were required to implement the plus immediate

instructions elnce existing phasing was used to Impl_ment the two instructions.

Circuitry was required for the decoding logic, HORA, ACCB, _B, SUMACC, and

SUN_ control lines as well as the ACC and _ clocks.

2.1.2.3 NAnuae Immediate Instructions

Two minus immediate instructions, which subtract _he imaediate

value from the accumulator or from the extended accumulator, were evaluated

for Technique I. The iinus immediate instructions subtract the Ismedlate

portio_ of the instruction word from the selected register and then store

the result in the selected register.

Two methods for implementing these two instructions were considered.

The first approach investigated the possibility of utilizing a load i_mediate

into the register not being selected and then negating this value. This

approach destroy,_i the contents of the unused register and thus was

discarded as _macceptable.

The second approach, which _aas selected for the design, evaluated

the subtraction of the imaedlate value from the selected register.

The organization of the two marius immediate instructions is almilar

to the MINUS instruction requiring two phases (_i" _2 ) and utilising phase one as "

the instruction fetch phase. Phase two which requires 2 clock cycles,

I
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gates the complement value o_ the i_nediate pperand to the least significant six

bits of one set of adder inputs and one*s into the remaining 12 inputs.

Simultaneously, the selected register, alone with the Co carry are gated into

the other set of adder inputs. The result of this 2'e complement addition

is then clocked into the selected register. Two clock cycles are required

to complete @2" A total of four clock cycles are _e_uired to complete__th_

minus immediate instruction, as compaM with five clock cycles for the

original MINUS instruction.

Most of the additional logic _or the minus iRnediate instructions was

added in the control with only the adder inputs being changed in the arithmetic-

register area. The 12 most significant |ares of one set of adder inputs had

one input gates changed to two input gates for use in .gating on" those 12

most significant inputs of the adder. The "gating on" feature set one' • into

these inputs so that a 2.s complement addition could be performed. In the

control, Goding and phasing gates were needed to implement the two phase

operation associated with these instructions. Additional gating was required

for the MORA, ACC B, CO, M_B, _ clock and ACC clock signals. The change

to the register-adder section amounted to changing the one input gates to two

input gates on the 12 most significant bits of the adder so that Z' s

can be forced into these bits.

2.2 Addressin_ Techniaue

Addreesir_ Technique II did not add instructions as such to the OBP,

but added two addressing capabilities (i_nediate and indirect addressing)

which a_fected a number of instructions. One7 modifications to the CPU

were neeeslar_ to implement then changes and they are dieouseed in the

followln_ paragraphs.

7



2.2.1 D_esi_n _ification

During the initial evaluation of this addressing approach, the removal

of the index register was considered to facilitate implementation of this tech-

nique. After the initial investigation of the OBP program was completed, it

was decided that a definite need for indexing existed, and the index

register was not removed.

With these two addressing modes added to the CPg, a total of four

addressing modes were available in the CPU a_ some type of detection circuit_

was necessary. To properl_ detect these modes, it was decided that bits 12

and 13 of the instruction word would be used as a 2 bit field for address

mode selection. The addressir_ modes and their associated codes are listed

in Table 2-2.

Immediate addressing capability was added to applicable instructions

as referenced in Table 2-1. This addressing feature permitted the use of the

least significant ii bits of the instruction word as an immediate operand.

Since the basic flow organization of the CPU was such that operande were

gated through the adder and the adder also controlled register to register

flow, it was advantageous to use the existing flow organization for the imnediate

addressing scheme.

Because bit 12 of the instruction word was used for address mode

detection, and an 11 bit immediate operand would satisfy the majority of com-

putational requirements, an 11 bit immediate operand was selected for imple-

mention in the CPU. The use of on_7 an 11 bit operand required that the

decoding of the immediate mode would control the 7 most significant inputs

of the adder which were utilized when the full 18 bit operate1 was selected.

8
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TABLE 2-1

Control Modifications For

Instructions Utilizing Immediate Addressing

Seven MSB of Adder

Qat_ o_

Plus

TRANSFORMED BY

LET

ANDED WITH

TIMES

THF_ GO TO

ORED WITH

SET EXTENSION WITH

USE SUB

GO TO

DIVIDED BY

EORED WITH

SUB PLUS

EXECUTE

HALT

I0

RESUME,

Seven MSB of Adder

_ed on .....

IF SUB

IS EQUAL

IS GREAT_

IS LESS

MINUS

Six LSB of MOR

SET SCALE

SHIFTED BY

CYCLED BY

DOUBLE SHIFTED BY

DOUBLE CYCLED BY

|
!
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Address Mode Field

13 12

0 0

o 1

1 o

1 1

TABLE 2-2

Addressing Mode Selection_

Addressin_ Mode

DIRECT ADI_SING

IMMEDIATE ADDRESSING

INDEXING

INDIRECT AD_%ESSING

n
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Two sets of adder inputs had to be controlled so .that both "gating on 'v and

"gating off" provisions were present. In order to accomplish this, the "A"

inputs to the adder were changed as follows. First, the seven most significant

two input gates were changed to three input gates for "gating off" control.

Second, the seven most significant one input gates were changed to two input

gates for "gating on" control. Also associated with the immediate addressing,

was the inhibit control on the memory request lines, as well as associated

clock and input control modifications. In order to properly utilize the

immediate approach in shift, cycle and scale setting instructions, oontrol

circuitry was added to control the setting of the scale register and operation

counter with the least significant six bits of the instruction word. Table 2@i

li:i_tsthe inatructions and their associated control.

In general, the execution of instructions using the adder was

decreased by onl_r one clock cycle with immediate addressing. In the

original design, the fetch and add phase were overlapped so they could be

executed in three clock cycles. To decrease this t_me _Mther a faster

adder must be utilized or the memory cycle time for the OBP must be decreased.

Indirect addressing was _nplemented for the instructions referenced

in table 2-i. Indirect addressing uses the normal operand fetch phase as

an address fetch phase which fetches the address used to fetch the operand.

This additional _hase adds two clock cycles and an extra memory cycle to

each instruction utilizing this mode of addressing.

The original system was designed to access 65K of memory through

s 12 bit address field and a & bit page which was appended to the address field.

The Page Register value was loaded into the four most significant bits of the

'rY
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address register during the instruction fetch phase. Thus, the first

_096 core locations could be accessed without setting the page register.

_hen higher core locations were accessed, the Page Register had to be Set

with a Set Page instruction priu to executing the given instruction.

When bit 12 _f the instruction word was selected as a field bit for

address mode selection, only an ii bit address field was available to address

memory. The use of an ii bit address field on_ allows access of the first

20_8 locations of core, therefore some means of controlling the 12th bit of

the address field was required. Since the present CPU organization utilAzed

the Page Register for address control, the utilization of th_s organi_ation

would enable complete address modification with minimal impact on hardware.

Therefore, an additional bit was appended to the Page Register.

With the introduction of indirect addressing, an additional control

phase similar in structure to the index phase was added to the CPU. The

decoded output _f the address mode selection field selected this phase to

fetch an address, which was clocked into the address register and used as

the normal operand address. The associated control circuitry was modified

when this phase was added to the CPU and additional control was added to request

memory during the indirect address fetch. Since the instruction word bits

12 and 13 were decoded for the address mode selection, it was also necemzary to

ensure that the gate delays through the decoder to the phase selection circuitry

was not critical to the system operation. Therefore, the number of gates connected

in a serial fashion had to be limited. Thim necemsitated the use of a parallel

gating structure and reaultediln a greater number of gates,

12
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Task 1 was orxanized so that two addressing techniques were evaluated

for the OBP system. A summary of these techniques follows:

2._. ! Technioue I

The addition of immediate addressing instructions was evaluated in

Technique I of this report. Six instructions were added to the instruction

set providing the capability to use immediate operands in OBP programs.

The following six instructions were added:

1. Load A Immediate

2. Plus A Immediate

3. Minus A Immediate

4. Load EA Immediate

5. Plus EA Immediate

6. Minus EA Immediate

The addition of these instructions required the change of the minor op-code

field from bits i-5 to bits 7-12 of the instruction word since bits 1-6

are used as the immediate operand field. It was possible to use bits 7-12

as the immediate operand, but that approach had a significant impact on hard-

ware beside the confusion associated with using these bits as an immediate

value.

The purpOse of adding immediate instructions to the CPU ts to

execute instructions utilizing partial word operands with a decrease in

execution time. The savings in program time however, must be jJustified by a

limited increase in hardware. While the total impact on hardware associated

with these instructions was n_Lniil, the savings in _rogram time was very

13



limited. The immediate add, or immediate 2's complement add(subtract) instruc-

tions are only one c_ck cycle faster than the original PLUS and _JS instructions

and this minimal saving in execution time does not Justify the implementation

of this technique, in addition, the OBP programmer expressed their feeling

that more addressing capability than that gained with this technique was

desired for increased programming flexibility. Thus, the technique was rejected.

2.3.2 Technique II

The addition of immediate addressing and indirect addressing

capabilities for the OBP system were evaluated in Technique II of this report.

The implementation of this technique dictated that some type of addressing

mode selection scheme must be implemented intt_ae CPU to distinguish between the four

possible addressing modes. As a result, bits 12 and 13 of the instruction •

word were selected as the field for use in address mode selection. These

bits were decoded and are referenced in Table 2-2.

Since the immediate addressing technique utilized the least signifi-

cant ii bits of the instruction word as an immediate _perand. The need for

an operand fetch was eliminated. Because the immediate operand did not use

all 18 bits, a method of controlling the re_ainlng seven bits was required.

Consequent_-, the adder gating was changed. Since the operand fetch and add

phases were overlapped in the original CPU instruction, a gain of onl_ one

clock cycle was realized for any immediate instruction ful_v utilizing the

adder. While the additional ciecuitry associated with the immediate addressing

approach was minimal, it was not Justified by the limltld savings in execution

time.

When indirect addressing Was incorporated into the CPU, the addition

of a bit to the Page Register, the control of the memory request line, and

!
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the new phasing added, had a big impact on the control circuitry +of the CPU.

In addition, indirect addressing adds two clock cycles to th_ execution time

of applicable instructions. The additional execution time and associated

increase in hardware were the main factors in rejecting this approach.

It was desirable to reduce eEecution time in the approaches discussed
¢

above so that program efficiency would be improved. Two means of reducing

instruction execution time were considered; either design a faster adder,

or reduce the basic memory cycle time. Since these two changes would have a

considerable Impact on hardware, they were rejected.

After evaluating both techniques, it was decided that the geale

whAch origi_ motivated these changes (increased program executiwn speed

and flexlbilAty with minimal hardware impact) were not achieved.

3.o

The study associated with Task i dealt with the investigation of

two approaches for improving the addressing capability of the OBP system.

These two techniques were evaluated and then discussed with NASA personnel

and programmers associated with the OBP. The results of these discussions

led to the decision to eliminate both addressing approaches since neithe_

proved satisfactory for the OBP s_stem. Instead, two alternative approaches

for improving the addressing capability of the OBP were suggested.

First, multiple index registers could be added to the CPU. Second,

15



the one index register could be utili_ed along with indirect store and indirect

load instructions. The second approach was chosen primarily because of the

increased hardware associated with the first approach.

In addition to the two indirect instructions, it was requested

that CPU _-egister_ be available for use as loop counters for controlling both

program loop execution az_. branching. To satisfy this request, instructions

to test and increment registers were added to further increase the addressing

and operational features of the OBP system.

Accompanying the test instructions was the request for the ability

to manipulate and transfer data in the CPU registers. In particular, it was

felt useful to compute an index v_lue in the accumulator and transfer this

value to the subscript register ($5), while not destroying the present value

of the SS. This operation is performed in the present OBP by executing

the following four instructions: PLUS, SAVE SUESCP_PTS IN, YIELD, and

USE SUESCR/PT. These four instructions could be replaced by PLUS and

EXCHANGEinstructions. In order to satisfy these requests, three instructions

were added to the instruction set to exchange the accumulator,the extended

accumulator, and the subscript register.

Although the new instructions were proposed with the improvement of

system performance in ,_nd, the decision to implement them was subject to

consideration of the impact of integrating these instructions into the design.

It was particularly desirable to delete any circuitry not being used in the

present system applications. _e investigation of the hardware impact of these

instructions was carried out with this thought in mind and it was found that--

certaini_'astructions and functions were not utilized by the programners in the

|
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]_esent programs. As the evaluation of ImplementinE Task 3 waa oonaluded,

the in,tructions were added with the least possible amount of additional

hardware, and all circuitry having limited application in present programs

was removed. The following changes were incorporated.

NOTE:

3.0.1

3.0.2

Additional Irmtructionn

i. LOAD INDIRECT

2. STORE INDIRECT

3. IF_ ¢ o, s_ _,._ I__ _ I
2

_. IF SS _ O, SET D and INC_ SS

5. EXCHANGE A3 & SS

6. EXCHANGE A & EA

7. EXCHANGE EA & SS

(i) EA - Extended Accumulator

(2) SS - Subscript Register

(3) A - Accumulator

(A) D - Decision Flip Flop

(5) PER- Memory 0porand Register

Functions Deleted

i. SCALE REGIST_

2. OR-AND FLIP FLOP

,_UStructio_ Removed3.0.3

1. LET SCALE

2. SET SCALE

3. O_

_. AND

I?

I 'rT •



3.O._ Instructions Modified

i. NORMALIZE - The normalized count is now stored inthe subecrlpt

register

2. MULTIPLY -Scaling is deleted fx'om multip_v

3. DIVIDE - Scaling, correction cycles, and overflow tests

are deleted from divide.

The chart in Table 3-i illustrates the impact of these changes.

3.1 Addition of l_struct_o_

Based on the resultso6f Task i, seven instructions (specified in

Paragraph 3.O.1 of this report) were added to the OBP instruction set. The

intent of these instructions was to improve the programmers ability to write

programs dlrectly associated with the OAO satellite applications.

The organization of the CPU is such that data flow paths inte_ connect

the register oircuitry via the adder. These flow paths were used to implement

the new instructions and thus onl_ the circuitry associated with the CPU

control logic was increased.

3.1.1 Instruction Descri_ion a_d Discussion

Seven ne_ instructions have been selected for integration into the

CFU design. A discussion of these instructions is given in the followAng

paragraphs.

3.1.1.i Indirect Ins_r_ctlons

Two indirect instructions, INDIRECT I_T and INDIRECT YIELD were

selected to be incorporated into the CPU design. The selection of these two

instructions was based c_ the desire for additional capability to easily access

buffer memory areas not readily accessible with one index register. This

18
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increased capability could be achieved with multiple index registers ..... However,

indirect addressing provided similar capabilities with less hardware.

The indirect load instruction loads data in the accumulator in the

same manner as the LET instruction, except that the indirect load requires

an additional phase which is two clock cycles long. This phase fetches an

address which is set into the address register, which in turn is used to

fetch the normal operand fetch address. Since all memory access functions

require two clock cycles, the indirect load is two cycles longer than a

LET instruction. Three phases (_i' _2' _3 ) are required to implement this

instruction. Phase one is the normal instruction fetch phase, phase two

fetches the address for the operand fetch, and phase three fetches the

operand and loads it into the accumulator.

The indirect store instruction stores data in memory in the same

manner as a YIELD instruction except for the data storage phase. The indirect

store instruction requires an additionalpphase used to fetch an address that

is set into the address register and used as an address to store data. The

indirect store requires three phases (_i' _2' _3 ) for complete execution

and ia one clock cycle longer than a YIELD. Phase one is the normal instruc-

tion fetch phase, _ase two fetches the address used for data storage, and

phase three stores the data at that address.

Both instructions were decoded as major op-code instructions with

inde_Lng available for both. The associated phasing, decoding, and control

modifications were minimal due to the use of existing phasing and flow

organizations. Control was also added to the memory request logic for the

extra _em_ry cycles.

instructions.

Eighteen (18) gates were required to implement these

i
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3.1.1.2 Test for Zero Instructions

Two instructions (T___T SS and TEST EA) were added to the instruction

set to test register contents for zero. These instruOtions required no

operand fetch and thus were implemented as manor op-code instructions. They

permit the SS and EA registers to be used as pointers or counters for calling

up sequential arrays of data, and for performing loop and branch operations.

The instructions were implemented in two phases (_i' _2 ) and are completed

in five clock cycles. The instructions operate as follows.

Phase one executes the normal instruction fetch function, while

phase two performs the test for zero on the selected register. If the

register under test is zero, no action is initiated in phase two and the

instruction is completed, but if the register tested in phase two is not

zero, the -D',flap flop is set and the register under test is incremented

by one °

The implementation of these instructions required little

additional hardware since existing zero detection circuitry was used for

performing the tests. Each register under test is gated into the adder and the

"_UM_O" output is tested for a "i". This output is then used to control the

setting of the "D',flap flop and the incrementing of the register. No new

circuitry was introduced into the registerearithmetic section of the CPU

and only a small amount was added in the control area. Full use of existing

flow paths was employed to hold the additional logic to a minAmum. Twelve (12)

gates were required to implement these two instructions.

3.1.1.3 Exchange XnstructAops

Three of the seven new instructions are 'register exchange,, instruc-
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tions. These instructions consist of exchanging the accumulator and the

extended accumulator, exchanging the accumulator and the subscript register,

and exchanging the extended accum_ator and the subscript register.

Addition of these instructions allow8 the programmer to exchange

registers without using several memory access instructions. One particular

application of the exchange accumulator and subscript register is in the

computation and use of an index value. First the index value is computed in the

accumulator, then the accumulator and subscript registers are exck_nged

so that the computed index values can be used innnediately without destroying

the existing index value.

The exchange instructions consist of two phases (_i' _2 )' and are

five clock cycles in duration. No operand fetch is required with these

instructions and they are decoded as minor op-code instructions. Phase one

is the normal instruction fetch phase and phase two performs the exchange.

When executing an exchange with the A, the following sequence is executed

in phase two. The NOR is cleared and the A is gated through the adder

and stored in the MOR. Then the EA or SS (depending on the instruct_n being

executed) is gated through the adder and is clocked into the A. The MOR

is then gated through the adder to the EAoor SS and the register is clocked.

If the instruction exchanges the EA and SS, the following sequence

is executed. During phase two, the MQR is cleared and the EA is gated through

the adder and stored in the NOR. Then the SS is gated through the adder and

clocked into the EA. Final_, the MOR is gated into the adder and clocked

into the SS to complete the instruction.

These instructions make use of the existing register organikation,

with register to register flow accomplished via the adder and therefore onl_

22
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control circuitry modifications are required. Twenty-one (21) gates are

required to implement these instructions.

3.2 Deletions - Circuitry a_d ,Instructions

In addition to the seven instructions added in Task 2j the following

circuitry and instructions were deleted.

The followl_ deletions were made:

1. Removal of the OA flip flop.

2. Removl_ of the scale reEimter.

The followinE instructions were modified:

i. Normalize

3. Divide

The foll_ing instructions were removed:

I. LET SCALE

2. SET SCALE

3. OR

_. AND

The decision to remove registers and instructions was a combined hardware-software

decision. When the two indirect instructions were added, two major op-codes

were required and onl_ one major op-code decoding was available for these

instructions. The two alternatives which existed were either to add additional

circuitry for the decoding, or to delete existing major op-code instruOtionm.

To properly evaluate the alternatives, the hardware and programming aspects

of these changes were investigated. An evaluation of the first alternative,

the addition of decoding circuitry, verified there would be a considerable iapect

rl
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on the hardware and programming manual documentation and this alternative was

rejected. The second alternative was to investigate the possibility of removing

major op-code instructions. An evaluation of this alternative showed that

removal of the seldom used scaling function would free a major op-code.

The following section is a discussion of the removal of this function.

3.2.1 Scale Re_ister and Associated Y_s_rugtions

In addition to its limited use, the scale register and its associated

circuitry were non symmetrical relative to other register and control logic.

This made it difficult to partition the scale register logic and since a

total of IA3 gates and flap flops were associated with the scale register,

its removal was attractive from the standpoint of hardware simplification.

The deletion of the s_ale register eliminated the LET SCALE

instruction (major c_-code) and the SET SCALE instruction (minor op-code).

In addAtion, three other instructions NORMALIZE, TIMES, aKd DIVIDED BY were

affected by the removal of the scale register. In all, a total of 113 gates and

flip flops were removed by the elimination of the scale register.

First, the NORMALIZE instruction, _hich previously stored the

normalized count in the scale register, had to be changed. Since the

normalized count must be saved, two possible solutions were considered. First,

the count could be stored in a fixed memory location. Second, the count could

be stored in a CPU register. The register store approach was considered more

practical since extra logic and execution time is required for the memory

store-cycle of the first approach. Storage of the normalize count in a

register utilizes the basic flow paths of CPU, and requires negligible change to

the logic. An idditional six gates are required on the adder. However, these
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replace the six orlginall_ used on the scale register. The subscript register

was selected as the register to be used for storing the normalized count

since the accua_lator and extended accumulator are normalized during the

NORMALIZE instruction. Onl_ a small amount of control logic is required

to implement thAs transfer.

A second instruction affected by the removal of the scale register

was maltlply (TIMES). TIMES origlnally had a scaling phase that shifted the

product, based on the value in the scale register. The scaling phase and

its associated hardware were eliminated with the removal of the scale register. __

The third instruction affected by the scale register was DIVIDED BY.

The divide instruction had a scaling phase that shifted the dividend prior

to performing the divide itself. Again, the direction and amountoef the

shift was determined from the value in the scale register. The scaling phase

and its associated hardware were removed with the eli_Atnation of the scale

register.

•3.2.2 F_xllficatlon of the Divide _struction

In the original design of the CPU, the decision to implement a

total hardware divide was based on the evaluation oJ_ the usage of a divide

instruction. The initial investigations indicated that the dAvide would be used

frequent_ and would prove most efficient, both in power saved, and execution

time saved, if it was total_v perfo:rmsd with hardware. Further investigations

into the applAcation of the divide instruction in the system programs

indicated that the divide instruction was used to a very limited extent. This

knowledge, accompanied with the fact that divide used a considerable amount

of control logic, prompted the decision to eliminate hhe majority of the

circuAtry aisoclated wlth divide.
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The .oz'igir.al hardware divide made both the divisor and dividend

positive prior to performing the divide algorithm so that no correction to the

quotient would be reLluired. After the divide was completed, the sign of the

remainder was tested to see if it was negative. If it was negative, the divisor

was added to the remainder for the correction cycle. After the correction

cycle was completed, the quotient was placed in the accumulator and the

remainder in the extended accumulator. Also included in the hardware divide were

the divide overflow tests.

It was decided that all special phasing associated with the divide

algorithm would be removed and the divide instruction was reduced to perform

the standard add/subtract shift cycles of the non-restoring division algorithm

with 81 gates and flip flops eliminated by the modification. As a result,

prior to the divide, the programmer must ensure that the divisor is larger,

in magnitude than the dividend to prevent overflow from occuring. In addition,

if an exact quotient (quotient may be off by i in the least significant bit)

or remainder is desired the appropriate corrections cycles must be performed

as indicated in Table 3-2.

3.2.3 Elimination of the OR-AND Fllp Flop

The OR-AND (OA) flip flop was inltial_7 designed into the CPU

as a means for controlling the setting and resetting of the "D" flip flop.

The setting of the OA indicated an "and conditional test" to reset the "D"

flip flop, while the resetting of the OA indicated an "or conditional teat"

to set the "D" flip flop. An examination of the system programs indicated

that only the "OR" state of the OA flip flop was being used. Since only one

state of the flip flop was being used, the decision was made-to eliminate it.
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Direct_ associated with the elimination of the O_ fllp flop was

the deletion of two mlnor op-code instructions; the OR and AND instruction.

Removal of these two instructions, the OA flip flop and the setting of the "D"

flip flop resulted in a decrease in control circuitry.

3.3 Summ_ of Task 2

Task 2 was organized to make changes in the CPU design that would give

the programm,_r greater flexibility in addressing and other programming opera-

tions. The total impact on hardware was the prime factor in deciding which

approach to take.

A total of seven new instructions were added to the OBP instruction

set. Table 3-i illustrates that a total of 51 gates were required to ful_v

implement these seven instructions. The additional flexibility and programming

speed gained from these instructions was large, relative to the percentage

increase in hardware to implement the seven instructions. The hardware was

held to a minimum by utilizing the existing CPU flow paths to implement

these instructions and the circuitry added was entirely in the control area.

Four instructions, the scale register and the OA flip flop were

removed. TIMES, DIVIDED BY, and the NORMALIZE instructions were affected by

the removal of the scale register. In addition, DIVIDED BY had overflow tests

and setup and correction cycles removed from the hardware.

The total change in the circuitry resulted in a reduction of circuits

used in the CPU. While the seven instructions added circuitry to the control

area, the deletions removed much more control circuitry. In comparing the

additions with the deletions, the additions tend to follow the basic symmetry

of the CPU design, while the deletions tended to be unsymmetrical. A total
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decrease of 160 gates was. realized with the improved instruction set. Table _-I

indicates where the 160 gates were removed fr_n the logic.

The elimination, of unique type control logic from the CPU was most

desirable from a packaging standpoint. The basic register-arithmetic portion

of the CPU is readily partitioned, while the control logic does not appear

to be readil_ partitionable. To enhanve packaging efficiency of the control

logic, the non-similar logic is to be minimized. The removal of the scale

register and OA flip flop and simplification of the divide instruction eliminated

a portion of that logic which is difficult to partition and thus should simplify

the packaging of the control logic.

A.o TASKS

This section discusses the results of a study of methods for redesign-

ing the OBP control logic in such a way as to introduce a greater degree of

symmetry or regularity into its structure. It is hoped that such a redesign will

facilAtate partitioning the logic into a relatively small number o_ general

purpose logic structures and thereby make it feasible to mount it on hybrid

substrates.

In the breadboard, almost all inputs an_ outputs from i_lividual gates

require external connections by way of pins on the printed circuit boards.

Since the number of pins is restricted, the density of gates is severely

iAmited. It is hoped that by partitioning the logic into more complex struc-

tures with man_ of the interconnections made on the substrate itself, the gate

density may be increased and the size of the processor reduced. To make

this packaging method economlcall_ feasible, however, it is necessary that

the n,unber-of-distlnct types of substrates be mAnJ_nized. Thus complex logic
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structures which occur repeatedly throughout the control circuitry must

be identified.

_.I Problems Encountered in Partltionir_ Control Logic

Unlike computer register logic in which essentially identical logic

structures are associated with each bit, control logic is in general a

formless irregular conglomeration of gates and flip flops. This is a

result of the fact that this logic is used to generate all the unrelated timing

and data dependent conditions which control the various data transfers

and transformations within the computer. Each block of logic performs a

function which is different from, and independent of, the functions of

neighboring blmcka.

A further complication results from the tendency of the logic

structures which generate individual control signals to be relative_ small

groups of gates with large numbers of inputs and outputs. These external

connections are difficult to reduce because they come from and go to a wide

variety of places in the processor. For example, the signal which sets the

END fllp flop has over 20 inputs from such sources as the phase flip flops,

various tests of the contents of the operation counter, selected bits of the

memory operand register, instruction decoder, etc. It is impossible to package

all these control slgnal_sources on the same subs_rat_ with the END flip flop.

As long as conventional gates and flap flops are used as the basic control

building blocks, it appears that pin limitations are still the factor

which control the degree to which packaging density may be increased.

_.2 Evaluation of Present control Lolic

Before a redesign of the OBP control logic was attempted, the
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feasibility of partitioning the present design was evaluated. The logic was

partitioned into as few types of fairly complex structures as possible. This

not on_v provided an estimate of the magnitude of the problem but also

served as a reference by which other designs could be Judged. During a

previous study, the registerllogic was partitioned into 18 sixty pin sub-

strates of-three different types. Since there are rough_ the same number

of gates in the control logic as in the register logic, this number provides

an order of magnitude goal for the control logic partitioning.

As expected, the frequency of occurrence of similar logic structures

sharp_v decreased as their complexity increased. In fact, no groups containing

more than three gates were found which occurred often enough (e.g., more than

eight times) to be considered general purpose structures. Examples of the

recurring structures which were found are shown in Figure _-i. It can

be seen that the savings in external connections is small as long as the

occurrence of similar complex structures is so limited.

Using these small general purpose blocks and implementing the

rest of the control logic with discrete gates and flip flops, a partitioning

scheme was organized which required 60 substratee (assuming 60 pins per

aubstrate) of five gifferent types.

4.3 Ao_roaches to Control Logic RedeeIA_n

Two approaches to the redesign of the OBP control logic were

investigated. The first consisted of constructing several relative_ complex

logic structures which could serve as general purpose logic blocks. These

blocks were not identical to any block actuall_ appearing in the control,

but were similar to several elightl_ different ones. Each block was designed

to be substituted for a ma_ number of similar structures with a minimum
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wastage of pins and gates. By replacing most of the control logic with a

few groups of gates in this manner, m much greater degree of regularity was

introduced without changing the basic building blocks of the system.

The other approach which appeared to offer a significant reduction

in the complexity of the OBP control was the use of a mlcroproErammed LSI

memory to store a majority of the control signals for the CPU. By sequencing

through a block of locations whose outputs directl_ or indirectly generate

the OBP control signals, many of the functions presently performed by discrete

gates can be performed instead by a much more compact LSI memory.

In the following paragraphs, these two design approaches will be

discussed in more detail.

_.3.1 General P_rpose Logic Structure Approach

The functions performed by the control logic are determined by

the various algorithms used to imp_ament the instruction set. Given these

constraints, however, the actual configuration of gates and flip flops necessary

to perform the operations in the proper order is not fixed. In the original

OBP control, the logic was designed with economy of gates in mind. However, synwnetry

is a more important characterAstic for partitioning. Therefore, extra pins and

gates can be included if by doir_ so it becomes possible to design one circuit

which can replace each of several slightly different ones. The pins wasted by

this practice will hopefully be more than compensated for by the pins saved

through the use of a more complex interconnection pattern on the substrates.

To design these structures, the OBP control circuits were categorised

by structural similarity; Then one general purpose circuit was designed to

implement the switching function represented _ each of the,e si_"_.,_lsrlogic
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structures. In general this necessitated wasting inputs and even entire

gates when the number of inputs varied from structure to structure. Output

pins were wasted when some circuits required the true signal to be brought

out, others required the complement, and soma required that both be available.

By providing the smallest nu_er of external connections necessary to meet

the needs of all the structures in the group, this waste wan minimized.

Approximately 90 percent of the OBP control logic was implemented

with 13 general purpose logic structures. Examples of these and their charac-

teristics are shown in Figures _-2 to _-5 and Table _,I. The iO percent of

the control logic which is not represented by these circuits consists primarily

of miscellaneous single gates and expander inputs which can probably be mounted

on the same substrates as the larger structures, thereby obviating the need

for a special substrate type.

_.3.2 _artitiordnu "for Substrates

6ivan the first order partitioning of organizing discrete gates

into general purpose logic structures, there remains the second order partition-

ing problem of placing these structures on substrates. The logic structures were

assigned to the substrates systematically to minimize both the total number of

substratas and the wastage of gates. However, some wastage was unavoidable

where logic structures would not fit on substrates in exactly the quantities

required by the system.

In the partitioning of the control in its present form, it was

assumed that the substrates to be used would have 60 pins. This ass_ption was

made because all the h_brid substrates manufactured by Westinghouse thus far

have been of this type. However, since control logic partitioning is so

severel_ affected by pin limitations, it seemed reasonable to investigate the

consequences of using submtrates with more pins. A sanewhat arbitrary decision
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Logic Structure Type No. of Gates No. of Pins Quantity Required

I 22 53 3

II 8 19 _0

III 6 18 7

Iv 5 9 7

v IA 28 8

VI 7 ll lO

VII 6 16 9

VIII 3 7 &l

IX 5 _ 5

X _ 12 16

XI i0 19 8

XII 6 12 8

Xlll & 6 32

Characteristics of General Purpose Logic Struct_es

Table 4"--I
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was made to perform the partitioning using substrates having 60, 90, 120 and

150 pine. Increments of 30 pine were felt to be large enou4h to show significant

differences in the partitions. The upper lim_.tof 150 pins w_s chosen as

the greatest number likely to be available on a substrata.

The results of this partitioning are summarized in Table &-2. It

can be seen that even if general purpose logic structures are available, the

gains are small for 60 pin substrates. A large improvement is achieved by

using 90 pin substrates. As the number of pins is increased to 120 and 150,

further reductions in both the number of substrates and the number of types

can be made. However, as the number of integrated circuit chips increases, the

amount of substrate area used for Interconnections also increases. Consequently,

it may prove necessary to use larger eubstrates to _veically realize the 120

and 150 pin configurations.

_.3.3 Summary of Control L_ic RedesiRn

It appears that significant reductions in the total number of

eubstrates and the number of substrate types may be achieved in this manner but

on_ by relaxing the pin limitations to at least 90 pins per substrate. At

present onl_ 60 pin subetrates are available hut no fundamental reasons are

known wh_ larger numbers of pins and perhaps larger substrates (should over-

crowding prove to be a problem) cannot be made available. It is also

interesting to note (see Table _-2) that the total number of external connections

tends to be reduced by using substrates with more pins. This implies that an

increase in reliability is possible through the use of general purpose logic

structures since the primary sources of failures are wired connections.
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Pins/Substrate No. of Types

6O 7

9O 5

120

150 3

No. of Max. No. of _o. of Pins

Substrates Chips/Substrate (total)

52 13 3120

27 18 _5o

22 22 2_30

16 29 2_00

Results of Logic Partitioning

Table %-2
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The substrate count for the control logic only approached the 18

substrate goal set by the register logic partitioning as the number of pins

was increased to 120. The fact that such reductions cannot be achieved

with @0 p_l substrates demonstrates the problems caused by the inherently

large numbers of external connections required for control logic.

4._ Microu_oflr@med Centre ! L_flic

To design a microprogrammed control unit, each machine instruction

is subdivided into "microinstructions", each of which represents the control

operations needed during one period o_ the system clock. Each microinstruction

is represented by one word in the memory. When a microinstruction is accessed,

the bits of this word are used to provide the necessary control signals.

Blocks of microinstructions are addressed in sequence to execute complex

machine instructions. If data dependent conditions are required, the control

memory output is used as an input to an external logic circuit which

implements the necessary function.

In addition to data conditioning logic, circuits external to the

memory will be needed to control the order and timing of the microinstruction

addressing sequence. It has been estimated that the external logic will

require approximately 300 gates er roughly 30 percent of the present control.

A.A.I Partition_n_ the Memory

For the portion of control logic rmpresented by the memory, parti-

tioning is simple and efficient. First, since the interconnections other

than address inputs and control signal outputs are all made on memory chips,

difficulties due to pin limitations are greatly lessened. Secondly, since

all the memory chips are connected in the same manner; only one type of

A1



substrate need be designed for the entire memory. If read/write memories

are used, all memory substrates will be exactly identical. If read-only

memories are used, everything except the contents of the individual chips

will be identical for all substrates. In either case, the use of one substrate

type to implement 70 percent of the contr_l logic represents a major

achievement. -

A preliminary design of the control memory needed for the OBP

indicates that a memory of approximately 150 words by 120 bits should be

adequate. This size assumes that all words are of uniform length and is

therefore a maximum figure. Since all microlnstructions do not make use of

all the control outputs, it may be possible to design a memory with individual

blocks of words containing only the control bits needed to perform particular

microlnstructions. For the following results, however, a uniform word

length memory was assumed.

To permit an estimate to be made of the number of substrates required,

it was further assumed that a 256 word by 8 bit memory chip was used as the

basic building block. This is the size of one of the largest monolithic MOS

memory chips currently available and was cnnsidered a realistic candidate

for selection should.this cesign approach be _lected.

Using these assumptions it was determined that 15 such chips would

be required. It was found that these could be placed on four identical

60 pin substrates.

A.A.2 External l_ic PartitionlnR

Although a detailed psrtitioning scheme was not worked out for the control

logic which was not incorporated into the memory, extrapolation from the results
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obtained from the design of the general purpose logic structures described

earlAer should provide reasonab_ accurate estimates of what can beachieved.

Assuming a linear relationship between the m_ber gates and the number of

substrates required, it should be possible to place the 300 external gates on

16 sixty pin substrates or six 90 pin substrates. If 90 pin subatrates are

used, it appears that all of the control logic could be mounted on

approxlmatel_ i0 subatrates.

_._.3 Problems I_troduced by Kicro_roKrammlng

One of the most serious dr_backs to the mlcroprogramming approach

described so far is the slow speed of presentl_ available low power P-channel

MOS memories. These memorios typicall_ have access times of the order of

one or two mlcrosecoluis. The clock presentl_ used in the OBP has a pulse

duration of approxlmate_ 320 nanoseconds and a period of 1500 nanoseconds.

Sin_ al_ operation_ must be completed before the clock pulse goes high,

there are only 1180 nanoseconds per clock period in which to manipulate or

transform data. It is obvious that problems occur with a one microsecond

RO_ in these circ_u_stances since the time remaining after the control signals

are available is insufficient for most processor operations.

One solution to this problem is to use a faster memory such as the

available high speed bipolar TTL memorles. However, the power dissipation

for a bipolar memory c_the required size would be more than i00 watts. This

figure is clear_ out of the range of interest for the OBP. On the other hand,

mem_rles are proposed for the near future which should operate at

sufficiently hi&h speed and require an extremely low amouat of power. These

may provide the best solution when they become available. ___
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A second possibility is to reduce the clock frequency and thereby

increase the period. It_as been calculated that a reduction from the present 667

KHz to _00 KHa would allow sufficient time for a PMDS ROM to operate properly.

It is beyond the scope of this report to determine whether a decrease in fre-

quency of this magnitude can be tolerated. 400 _Hz was shown to allow sufficient

time to access a control word and perform an 18 bit addition in one _lock

cycle.

The third method is to compensate for the access time of preeent_

available ROM's by overlapping the microinstruction fetch with the previous

control word. If the ROM output word is stored in a clocked buffer register,

the next mlcroinstruction can be accessed during the execution of the present

one. The present control word is protected by the buffer since the new output

word cannot enter the register until the next clock pulse. In this way the

necessity of waiting after each microlnstruction for the R0M to produce the

next control word ie avoided.

The major obstacle to this approach is the amount of hardware needed

to buffer the ROM outputs. To buffer 120 control lines, a like number of

flip flopswill be needed. If discrete flip flops are used this means

increasing the amour_ of hardware by approximatel_ one third. However, there

are currently available MSI devices which would reduce the required amount of

hardware and could be placed on the same substrates as the ROH'e. The use of

either counters or other HSI functions capable of acting as clocked output

buffers may make this method practical.

Another obstacle to this approach is two clock cycle add time of the

present deiign. In the context of mlcroprogra_ning, thls means that the same

location must be accessed continuously for two clock cycles in control words
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whore additions occur. The control logic needed to ,ccompJ.tsh tl_8 would

probab_7 be a phase fllp flop scheme much like the one presentl_ used.

A preLiminary design shc_ed that approximately 50 additional gates

would be required to produce all the necessary timing conditions. This

approach is undesirable both because it requires a substantial aaount of control

logic external to the memory and because it complicates the timing control.

To avoid these problem,ilt is anggested that a high speed adder be investigated.

_._._ Summary of MicrouroKranned Csn#rOl

Hicroprogranaed control provides a great reduction in the OBP

control logic through the replacement of 70 percent _f the logic by compact

L_I memories. T_e logic which cannot be programmd in the aemory can be

effectlve_y partitioned through the use of general purpose logic structures.

Although _he speed of presently available P-channel M0S memorles

presents some design problems, it is anticipated that these will be avoided

when large densely _ackaged C_0S memories becaae available. The use of

C_OS memories will also greatly reduce the power requirements of the OBP.

The adoption of a one clock cycle adder will also enhance the advantages

offered by this design approach.

Because mos_0 of the connections in a microprogra_ed control unit are

made on the mmnory chip itself s the number of necessary wired connections

is relatively small. _naequently system reliability should be improved.

4._ Smmmary of Task

Both approahhes described above will facilitate the partitioning

of the OBP control logic. However, the general purpose logic structure approach

is real_7 on_ a partial l,olution in that by itself it allows only some of

_5



the reductions that are possible when it is used in conjunction with micropro-

grammin_. As mentioned above, it should be possible to mount the control

on 52 sixty pin substrates, using the general purpose logic technique alone.

If, on the other hand, most of te_t_ic is incorporated into a memory, and

general purpose structures are used _o partition the rest, it is estimated

that 20 sixty pin substrates should be sufficient. If 90 pin packages are

made available, the numbers of required substrates for the two techniques

can be reduced to 27 and i0 respectively.

Based on these results it appears that the optimum design approach

is to employ microprogramming to the maximum extent possible, using general

purpose logic structures to partition the remaining logic. Since it has been

shown that significant reductions in the rqquired number of substrates can

be made by relaxing pin limitations, it is further suggested that the

possibility of using substrates with more pins be eeriousl,v oonsidered.

It should be noted that although the use of substrates has been

assumed t'.xoughout this section, the results appl_ equal_v to any type of

replaceable package (e.g., printed circuit cards, etc. ). Substrates were

used because they appeared to be the most likely packaging device for the

next generation OBP.
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